Probabilistic modelling of prospective environmental concentrations of gold nanoparticles from medical applications

Indrani Mahapatra¹, Tianyin Sun^{2,3}
Julian Clark¹, Peter Dobson⁴, Konrad Hungerbühler³
Jamie Lead^{1,5}, Bernd Nowack², Richard Owen⁶

- 1. University of Birmingham
- Empa-Swiss Federal Laboratories for Materials Science and Technology
- 3. ETH Zürich-Swiss Federal Institute of Technology
- 4. Warwick University
- 5. University of South Carolina
- 6. University of Exeter

Overall structure

- Motivations
- Objectives
- Methodological approach
- Limitations
- Results
- Conclusions

MOTIVATION

Motivation

- Increase in research with regard to gold nanoparticles (nano-Au) in the healthcare field
 due to
 - Unique properties at nanoscale
 - Ease of surface functionalisation
 - Easy synthesis
 - Relative biocompatibility

Engineering. Volume 26, Pages 171–179

Lukianova-Hleb, E.Y., et al. (2014) Nature Medicine 20, 778–784

Motivation

- Some medical applications already in the market and some show high potential for translation for widespread diseases like cancer, diabetes
- No studies yet published to predict environmental concentrations of nano-Au from medical applications
- Increase in research with regard to nano-Au in other areas – catalysts for air and water purification, sensors for detecting harmful gases
- Nano-Au has been shown to be toxic to organisms in the environment

Objectives

- Estimate the yearly maximal possible consumption of nano-Au from current and prospective medical applications for the UK and US
- Model the concentrations in the transient compartments of Sewage Treatment Plants, Waste Incineration Plants and the environment compartments
- Perform environmental risk assessment

METHODOLOGICAL APPROACH

Methodological Approach

- Model Type: Probabilistic mass flow model developed by Gottschalk et al., 2009
- Geographical regions: UK and US
- Consumption data: 100% market penetration and all patients, irrespective of socio-economic status etc., have access
- Risk assessment: Probabilistic species sensitivity distribution (pSSDs) vs. Predicted environment concentration (PEC) method adopted from Gottschalk and Nowack, 2013

LIMITATIONS

Limitations: Model

Static

Dynamic aspects not considered (time dependant particle release as well as kinetics)

- Product use data of only one year
- Size, shape and surface chemistry cannot be considered: sphericity was assumed for all particles and the mass of nano-Au was calculated

Limitations: Data

- Many extrapolations to estimate nano-Au amount in in vitro diagnostic devices
- Due to time lag in reporting and updating disease incidence and prevalence data in disease registries, not all data are for the same year
- No ADME (absorption, distribution, metabolism, excretion) studies in humans
- Very few studies on fate and behaviour of nano-Au in the environment
- No studies on transformation and fate of nano-Au in waste incineration plants
- Less toxicity data available with respect to soil organisms
- Limited chronic toxicity data for aquatic organisms

ESTIMATION OF CONSUMED AMOUNTS OF NANO-Au

Applications selected

- Pregnancy and ovulation test kits
- Test kits to diagnose HIV/ AIDS
 - Home based
 - Lab based
- Removal of SA from nasal carriages to prevent nosocomial infection prevention
- Treatment of gum diseases
- Diagnosing septicaemia and respiratory virus
- Genetotyping diagnostic tests

- Diagnosis of different types of cancers and Chronic Kidney Disease via exhaled breath
- Treatment of cancers thermal ablation
- Treatment of cancers TNF delivery
- Diabetes management

Method to arrive at nano-Au consumption estimates

Amount per device/application

No. of application used per year

Population

- Estimate the maximal possible nano-Au amount
 - mass of gold depending on particle size
 - amount required per test for in vitro diagnostic medical devices (IVD) or therapeutic dose
- Number of times a particular application likely to be used in a year or dose required for treatment
- Population estimate using disease incidence and prevalence data for the most recent year

Consumption of nano-Au

Application	UK	US	Un it	Waste compartment	Probability distribution function
Insulin delivery for diabetes management	128	842	kg	Sewage	Uniform
Treatment of Periodontitis	0.28 -107	1 - 365	kg	Sewage	Uniform
Removal of Staphylococcus aureus from the nasal passage of patients	0.03-53	0.11 -165	kg	Sewage	Uniform
Diagnostic test kits for infectious diseases	74	356	g	Hazardous waste	Uniform
Home based in vitro HIV test kits	18	87	g	Municipal waste	Uniform
Pregnancy and ovulation test kits	3 -100	15-463	g	Municipal waste	Uniform

Consumption of nano-Au

A	pplication	UK	US	Unit	Waste compartment	Probability distribution function
	mors (colorectal, s, breast)	0.07-(0.42)-1	0.31-(2)-5	kg	Sewage	Triangular
pancrea	mors (colorectal, s, breast) – sionate use	0.42	2	kg	Sewage	Uniform
Head & lung car	neck cancer and ocer	140 - 234	745 - 1241	kg	Sewage	Uniform
lung car	neck cancer and ncer – sionate use	105 - 175	468 -780	kg	Sewage	Uniform
	for diagnosing ria breath	0.01 - 1589	0.03 - 4616	g	Hazardous waste	Uniform

CONCENTRATIONS IN ENVIRONMENT COMPARTMENTS AND RISK ASSESSMENT SUN-SNO-GUIDENANO Sustainable Nanotechnology Conference

9-11 March 2015, Venice

UNIVERSITYOF

BIRMINGHAM

Materials Science & Technology

Flows of nano-Au in the environment (UK)

Flows of nano-Au in the environment (UK)

Flows of nano-Au in the environment (US)

Concentration of nano-Au in the technosphere

		Hazardous waste	Landfill	Medical Waste Incinerators		Municipal waste incinerators	
				Fly ash	Bottom ash	Fly ash	Bottom ash
		μg kg-1	μg kg-1	μg kg-¹	μg kg-1	μg kg-1	μg kg-1
	Q15	23	3	36	27	39	28
UK	Mode	34	4	28	23	51	28
	Q85	130	5	518	393	67	52
	Q15	20	3	30	23	31	30
US	Mode	16	4	27	20	38	30
	Q85	110	5	431	330	48	38

Concentration in non-hazardous waste is less than 0.1µg kg⁻¹

Concentration of nano-Au in the ecosphere

		STP Effluent	Surface water	Sediment	STP sludge	Soil
	Units	pg L ⁻¹	pg L ⁻¹	ng kg-1 y-1	μg kg¹	ng kg-1 y-1
	Q15	217	214	132	94	227
UK	Mode	359	268	165	126	301
	Q85	665	725	447	154	368
	Q15	95	3	3	119	121
US	Mode	168	4	5	145	147
	Q85	271	7	8	171	174

Data rounded off to the nearest whole number

Environmental Risk Assessment

Exposure

Measure concentrations in the environment: field sampling and chemical analysis
Predict environmental concentrations via modelling

Bioassay toxicity tests Acute and chronic toxicity tests

Hazard

Probabilistic Mass Flow modelling (PEC)

Probabilistic Species Sensitivity Distribution Risk

Details of data for creating the pSSD

- 12 relevant studies
- 26 values
- Endpoints selected: mortality and malformation, growth inhibition, reproductive impairment and acute immobilisation
- Relevant assessment factors used to account for chronic toxicity and to arrive at No Observed Effect Concentration

Probabilistic species sensitivity distribution (pSSD) for nano-Au in fresh water and soils

Probability distributions of the PECs and the pSSDs for nano-Au in surface water

Probability distributions of the PECs and the pSSDs for nano-Au in agricultural soils

Conclusions

- Total amount of nano-Au consumed in a year
 - UK: 540 kg
 - US: 2700 kg
- Significant release to the water compartment from therapeutics
- nano-Au concentration is surface water (0.0026 to 0.725 ng/L) is similar to background concentrations in freshwater (<1ng/L to 50 ng/L)
- nano-Au concentration in sludge (126 &145 µg/kg) is less than gold present in sludge (790 µg/kg - Sweden)
- No risk from nano-Au to aquatic and soil organisms, but more toxicity studies required

Prof. Jamie Lead

Prof. Bernd Nowack

Prof. Peter Dobson

Prof. Konrad Hungerbühler

Dr. Julian Clark

Prof. Richard Owen

Indrani Mahapatra

Acknowledgement: NIHR Horizon Scanning Centre at

